Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 32

Answer

$y=2cos(t)-sin(t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''-{y}''+{y}'-y=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}-r^2e^{rt}+re^{rt}-e^{rt}=0\\\\$ $r^3-r^2+r+-1=(r-1)(r^2+1)=0 \rightarrow\;\;\;\;\; r_{1}= 1\;\;\;\;\;or\;\;\;r_{2}=i\;,r_{3}=-i \;\;\;\;\;\;\\\\$ So the 3 roots are: $\;\;\;\;\;\;r_{1}=1 \;\;\;,\;\;r_{2},r_{3}=\pm i $ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= C_{1}e^{t}+C_{2}cos(t)+C_{3}sin(t)$ Derivatives of the general solution; ${y}'=C_{1}e^t-C_{2}sin(t)+C_{3}cos(t)$ ${y}''=C_{1}e^t-C_{2}cos(t)-C_{3}sin(t)$ At; $y(0)=C_{1}+C_{2}=2 \;\;\;\;\;\Rightarrow \;\;\;\;\;C_{2}=2-C_{1} $ ${y}'(0)=C_{1}+C_{3}=-1 \;\;\;\;\;\Rightarrow \;\;\;\;\;C_{3}=-1-C_{1} $ ${y}''(0)=C_{1}-C_{2}=-2 $ $\;\;\;\;\;\Rightarrow \;\;\;\;C_{1}=0\;\;\;\;\;\;\;C_{3}=-1\;\;\;\;\;\;C_{2}=2$ $\therefore y=2cos(t)-sin(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.