Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 20

Answer

$y=C_{1}+C_{2} e^{t}+ [\;C_{3}e^{-t}cos(\sqrt{3} t)+ C_{4}e^{-t}sin(\sqrt{3} t)\;]$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $y^{(4)}-8{y}'=0 \;\;\;\;\Rightarrow \;\;\; r^4e^{rt}-8re^{rt}=0\\\\$ $r^4-8r=r(r-1)(r^2+2r+4)=0 \;\;\;\;$$\;\rightarrow \;\;\;\; r_{1}=0\;\;\;\;\;\;or\;\;\;\;\;r_{2}=1\;\;\;\;\;or\;\;\;\;\; r_{4}=-1+i\sqrt{3}\;,r_{5}=-1-i\sqrt{3}\;\;\;\\\\$ $y=C_{1}+C_{2} e^{t}+ [\;C_{3}e^{-t}cos(\sqrt{3} t)+ C_{4}e^{-t}sin(\sqrt{3} t)\;]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.