Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 14

Answer

$y(t)=C_{1}+C_{2}t+C_{3}t^2e^{2t}+C_{4}t^3e^{2t}$

Work Step by Step

let : $\;\;\;\;\;\;\;\;\;y=e^{rt}$ ${y}'=re^{rt}\;\;\;\;\;\;\;\;\;{y}''=r^2e^{rt}\;\;\;\;\;\;\;\;{y}'''=r^3e^{rt}\\\\$ $(r^4-4r^3+4r^2)e^{rt}=0\\\\$ $\Rightarrow r^4-4r^3+4r^2=0\\\\$ $r^2(r^2-4r+4)=0\;\;\;\;\;\;\rightarrow \;\;\;\;\;\;r^2(r-2)^2=0\\\\$ $r=2\;\;\;\;\;\;\;\;\Rightarrow \;\;\;r_{1},r_{2}= 2\;\;\;\;or\;\;\;\; \;\;r_{3},r_{4}=0\\$ $y(t)=C_{1}+C_{2}t+C_{3}t^2e^{2t}+C_{4}t^3e^{2t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.