Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 33

Answer

$y=\frac{-2}{3}e^{t}+\frac{-1}{10}e^{2t}+\frac{-1}{6} e^{-2t}+\frac{-16}{15}e^{\frac{-1}{2}t}$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $2y^{(4)}-{y}'''-9{y}''+4{y}'+4y=0 \;\;\;\;\Rightarrow \;\;\;\; 2r^4e^{et}-r^3e^{rt}-9r^2e^{rt}+4re^{rt}+e^{rt}=0\\\\$ $r^4-r^3-9r^2+4r+4=(r-1)(r-2)(r+2)(2r+1)=0 $ $ \rightarrow\;\;\;\;\; r_{1}= 1\;\;\;\;\;or\;\;\;r_{2}=2\;\;\;\;\;\;\;or\;\;\;\;r_{3}=-2 \;\;\;\;\;or\;\;\;r_{4}=\frac{-1}{2}\\\\$ So the 3 roots are:$\;\;\;\;\;\; r_{1}=1 \;\;\;,\;\;r_{2}=2\;\;\;\;\;\;r_{3}=-2 \;\;\;,\;\;\; r_{4}=\frac{-1}{2}$ $y= C_{1}e^{t}+C_{2}e^{2t}+C_{3}e^{-2t}+C_{4}e^{\frac{-1}{2}t}$ Derivatives of the general solution; ${y}'=C_{1}e^t+2C_{2}e^{2t}-2C_{3}e^{-2t}-\frac{1}{2}C_{4}e^{\frac{-1}{2}t}$ ${y}''=C_{1}e^t+4C_{2}e^{2t}+4C_{3}e^{-2t}+\frac{1}{4}C_{4}e^{\frac{-1}{2}t}$ ${y}'''=C_{1}e^t+8C_{2}e^{2t}-8C_{3}e^{-2t}-\frac{1}{8}C_{4}e^{\frac{-1}{2}t}$ At; $y(0)=C_{1}+C_{2}+C_{3}+C_{4}=-2 $ ${y}'(0)=C_{1}+2C_{2}-2C_{3}-\frac{1}{2}C_{4}=0 $ ${y}''(0)=C_{1}+4C_{2}+4C_{3}+\frac{1}{4}C_{4}=-2$ ${y}'''(0)=C_{1}+8C_{2}-8C_{3}-\frac{1}{8}C_{4}=0 $ $\;\;\;\;\;\Rightarrow \;\;\;\;C_{1}=\frac{-2}{3}\;\;\;\;\;\;C_{2}=\frac{-1}{10}\;\;\;\;\;\;\;C_{3}=\frac{-1}{6} \;\;\;\;\;\; C_{4}=\frac{-16}{15}$ $\therefore y=\frac{-2}{3}e^{t}+\frac{-1}{10}e^{2t}+\frac{-1}{6} e^{-2t}+\frac{-16}{15}e^{\frac{-1}{2}t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.