Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 15

Answer

$y=[C_{1}e^{\frac{\sqrt{3}}{2} t}cos(\frac{1}{2} t)+C_{2}e^{\frac{\sqrt{3}}{2} t}sin(\frac{1}{2} t)] + [C_{3}e^{-\frac{\sqrt{3}}{2} t}cos(\frac{1}{2} t)+C_{4}e^{-\frac{\sqrt{3}}{2} t}sin(\frac{1}{2} t)] + [C_{5}cos( t)+C_{6}sin( t)]$

Work Step by Step

Let $\;\;\;\;\;\;\;\;y=e^{rt}\\\\$ $y^{6}+y=0 \;\;\;\;\;\Rightarrow \;\;\;\;\; r^6e^{rt}+e^{rt}=0\\\\$ $r^6+1=0 \;\;\;\;\;\; \rightarrow \;\;\;\;\; r=\sqrt[6]{-1}\\\\$ $r=(-1)^{\frac{1}{6}}= e^{i\frac{n \pi}{6}} = cos (\frac{n \pi}{6})+isin\frac{n \pi}{6}$ At $\;\;\;\;\;n=\{1,2,3,4,5,6\}$ $r_{1}=\frac{\sqrt{3}}{2}+\frac{i}{2}$ $r_{2}=i$ $r_{3}=-\frac{\sqrt{3}}{2}+\frac{i}{2}$ $r_{4}=-\frac{\sqrt{3}}{2}-\frac{i}{2}$ $r_{5}=-i$ $r_{6}=\frac{\sqrt{3}}{2}-\frac{i}{2}$ So the six roots is:$\;\;\;\;\;\frac{\sqrt{3}}{2}\pm\frac{i}{2} \;\;\;\;\;,\;\;\;\;\; -\frac{\sqrt{3}}{2}\pm\frac{i}{2} \;\;\;\;\;\;\; , \;\;\;\;\;\; \pm i$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y=[C_{1}e^{\frac{\sqrt{3}}{2} t}cos(\frac{1}{2} t)+C_{2}e^{\frac{\sqrt{3}}{2} t}sin(\frac{1}{2} t)] + [C_{3}e^{-\frac{\sqrt{3}}{2} t}cos(\frac{1}{2} t)+C_{4}e^{-\frac{\sqrt{3}}{2} t}sin(\frac{1}{2} t)] + [C_{5}cos( t)+C_{6}sin( t)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.