Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 60

Answer

$\dfrac{99}{10}-2 \ln 10$

Work Step by Step

As we are given that $\int^{\ln 10}_{0} 4\sinh^2(\dfrac{x}{2}) dx$ Use formula, $\sinh x=\dfrac{e^{x} - e^{-x}}{2}$ Thus, $\int^{\ln 10}_{0} 4\sinh^2(\dfrac{x}{2}) dx=\int^{\ln 10}_{0} 4 [\dfrac{e^{x/2} - e^{-x/2}}{2}]^2 dx$ and $\int^{\ln 10}_{0} 4 [\dfrac{e^{x/2} - e^{-x/2}}{2}]^2 dx= \int^{\ln 10}_{0} (e^{x} + e^{-x} -2) dx=[ e^{x} - e^{-x}-2x]^{\ln 10}_{0}$ or, $=(10 -\dfrac{1}{10}-2 \ln 10)$ Hence, $\int^{\ln 10}_{0} 4\sinh^2(\dfrac{x}{2}) dx=\dfrac{99}{10}-2 \ln 10$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.