Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 45

Answer

$7 \ln ( \cosh \dfrac{x}{7}) +C$

Work Step by Step

As we are given that $\int \tanh (\dfrac{x}{7}) dx$ Now, Plug $\dfrac{x}{7}=a$ and $dx= 7 da$ Thus, $\int \tanh (\dfrac{x}{7}) dx= 7 \int \tanh a da =7 \int \dfrac{\sinh a}{\cosh a} da $ Now, again plug $\cosh a =u \implies \sinh a da =du$ This implies $7 \int \dfrac{\sinh a}{\cosh a} da=7 \int \dfrac{dt}{t}= 7 [\ln |u|] +C= 7 \ln ( \cosh \dfrac{x}{7}) +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.