Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 11

Answer

Proofs given below.

Work Step by Step

$(a)$ Proving $\sinh(x+y) =\sinh x\cosh y+\cosh x\sinh y$ $\displaystyle \sinh x\cosh y=\frac{e^{x}-e^{-x}}{2}\cdot\frac{e^{y}+e^{-y}}{2}=\frac{e^{x+y}+e^{x-y}-e^{y-x}-e^{-y-x}}{4}$ $\displaystyle \cosh x\sinh y=\frac{e^{x}+e^{-x}}{2}\cdot\frac{e^{y}-e^{-y}}{2}=\frac{e^{x+y}-e^{x-y}+e^{y-x}-e^{-x-y}}{4}$ Adding, we have the RHS of equation (1) RHS=$\displaystyle \frac{2e^{x+y}-2e^{-(x+y)}}{4}=\frac{e^{(x+y)}-e^{-(x+y)}}{2}=\sinh(x+y)$ The first formula is valid. To show that (a) is valid, $\sinh(2x)=\sinh(x+x)=\sinh x\cosh x+\cosh x\sinh x$ $=2\sinh x\cosh x$ $(b)$ Proving $\cosh(x+y) =\cosh x\cosh y+\sinh x\sinh y$ $RHS=\displaystyle \frac{e^{x}+e^{-x}}{2}\cdot \frac{e^{y}+e^{-y}}{2}+\frac{e^{x}-e^{-x}}{2}\cdot\frac{e^{y}-e^{-y}}{2}$ $=\displaystyle \frac{e^{x+y}+e^{x-y}+e^{-x+y}+e^{-x-y}}{4}+\frac{e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}}{4}$ $=\displaystyle \frac{2e^{x+y}+2e^{-(x+y)}}{4}$ $=\displaystyle \frac{e^{x+y}+e^{-(x+y)}}{2}=\cosh(x+y)$, so the second formula is valid. To show that (b) is valid, $\cosh(2x)=\cosh(x+x)=\cosh x\cosh x+\sinh y\sinh y$ $=\cosh^{2}x+\cosh^{2}y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.