Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 10

Answer

$0$

Work Step by Step

Use hyperbolic functions formula as follows: $ \cosh x= \dfrac{e^x+e^{-x}}{2}$ and $ \sinh x= \dfrac{e^x-e^{-x}}{2}$ Need to solve: $\ln (\cosh x+\sinh x )+ \ln (\cosh x -\sinh x )$ This implies, $\ln (\cosh x+\sinh x )+ \ln (\cosh x -\sinh x )=\ln [\dfrac{e^x+e^{-x}}{2}+\dfrac{e^x-e^{-x}}{2}]+\ln [\dfrac{e^x+e^{-x}}{2} -\dfrac{e^x-e^{-x}}{2}]=\ln [\dfrac{2e^x}{2}] + \ln [\dfrac{2e^{-x}}{2}]=x-x$ Hence, $\ln (\cosh x+\sinh x )+ \ln (\cosh x -\sinh x )=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.