Answer
$2$
Work Step by Step
Hyperbolic functions identities are: $ \cosh x= \dfrac{e^x+e^{-x}}{2}$
Then
$\text{sech} x=\dfrac{1}{\cosh x}=\dfrac{2}{e^x+e^{-x}}$
Given: $y=(x^2+1) \text{sech}(\ln x)$
or, $y=(x^2+1)\dfrac{2}{e^{\ln x}+e^{-\ln x}}=(x^2+1)\dfrac{2}{e^{\ln x}+e^{\ln x^{-1}}}=(x^2+1)\dfrac{2x}{x^2+1}=2x$
Hence, $\dfrac{dy}{dx}=2$