Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 23

Answer

$2$

Work Step by Step

Hyperbolic functions identities are: $ \cosh x= \dfrac{e^x+e^{-x}}{2}$ Then $\text{sech} x=\dfrac{1}{\cosh x}=\dfrac{2}{e^x+e^{-x}}$ Given: $y=(x^2+1) \text{sech}(\ln x)$ or, $y=(x^2+1)\dfrac{2}{e^{\ln x}+e^{-\ln x}}=(x^2+1)\dfrac{2}{e^{\ln x}+e^{\ln x^{-1}}}=(x^2+1)\dfrac{2x}{x^2+1}=2x$ Hence, $\dfrac{dy}{dx}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.