Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 5

Answer

$x+\dfrac{1}{x}$

Work Step by Step

Use the hyperbolic function formula as follows: $ \cosh x= \dfrac{e^x+e^{-x}}{2}$ Need to solve. $2 \cosh ( \ln x)$ $2 \cosh ( \ln x)=2[ \dfrac{e^{\ln x}+e^{-\ln x}}{2}] \\ =e^{\ln x}+e^{(-\ln x)} \\=e^{\ln x}+e^{(\ln x^{-1})} \\ =x+x^{(-1)} \\=x+\dfrac{1}{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.