Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 53

Answer

$\displaystyle \frac{3}{32}+\ln 2$

Work Step by Step

Evaluate the integral as follows: $\displaystyle \cosh\theta=\frac{e^{\theta}+e^{-\theta}}{2}$ $\displaystyle \int_{-\ln 4}^{-\ln 2}2e^{\theta}\cosh\theta d\theta=\int_{-\ln 4}^{-\ln 2}2e^{\theta}(\frac{e^{\theta}+e^{-\theta}}{2})d\theta$ $=\displaystyle \int_{-\ln 4}^{-\ln 2}(e^{2\theta}+1)d\theta\qquad\left[\begin{array}{ll} t=e^{2\theta} & dt=2e^{2\theta}d\theta\\ \theta=-\ln 4 & \rightarrow t=\frac{1}{e^{2\ln 4}}=\frac{1}{4^{2}}\\ \theta=-\ln 2 & \rightarrow t=\frac{1}{e^{2\ln 2}}=\frac{1}{2^{2}} \end{array}\right]$ $=\displaystyle \int_{1/16}^{1/4}\frac{1}{2}dt+\int_{-\ln 4}^{-\ln 2}d\theta$ $=\displaystyle \frac{1}{2}[t]_{1/16}^{1/4}+[\theta]_{-\ln 4}^{-\ln 2}$ $=\displaystyle \frac{1}{4}(\frac{1}{4}-\frac{1}{16})+(-\ln 2+\ln 4)$ $=\displaystyle \frac{1}{4}(\frac{4-1}{16})+(-\ln 2+2\ln 2)$ $=\displaystyle \frac{3}{32}+\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.