Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 37

Answer

a) $\dfrac{d}{dx}[ \tan^{-1} x(\sinh x) +C] =sech x$ b) $\dfrac{d}{dx}[ \sin^{-1} x(\tanh x) +C] =sech x$

Work Step by Step

(a) Since, $\cosh^2 x-\sinh^2 x=1$ $\dfrac{d}{dx}[ \tan^{-1} x(\sinh x) +C]=\dfrac{1}{(\sinh x)^2 +1} \cosh x=\dfrac{\cosh x}{\sinh^2 x +1}$ or, $ =sech x$ (b) Since, $1- \tanh^2 x =sech^2 x$ $\dfrac{d}{dx}[ \sin^{-1} x(\tanh x) +C]=\dfrac{1}{\sqrt {1-\tanh^2 x}} sech^2 x=\dfrac{sech^2 x}{\sqrt{sech^2 x}} $ or, $=sech x$ Hence, a) $\dfrac{d}{dx}[ \tan^{-1} x(\sinh x) +C] =sech x$ b) $\dfrac{d}{dx}[ \sin^{-1} x(\tanh x) +C] =sech x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.