Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 58

Answer

$8(e^{2}-e^{-2}-e+e^{-1})$

Work Step by Step

Evaluate the integral as follows: $\displaystyle \int_{1}^{4}\frac{8\cosh\sqrt{x}}{\sqrt{x}}dx$= ... $\qquad\left[\begin{array}{ll} t=\sqrt{x} & dt=\frac{dx}{2\sqrt{x}}\\ x=1 & \rightarrow t=1\\ x=4 & \rightarrow t=2 \end{array}\right]$ $=\displaystyle \int_{1}^{2}8\cosh t(2dt)=16\int_{1}^{2}\cosh tdt=\qquad$ Using table 8: $=16[\sinh t]_{1}^{2}$ $=16(\sinh 2-\sinh 1)$ $=16[(\displaystyle \frac{e^{2}-e^{-2}}{2})-(\frac{e-e^{-1}}{2})]$ $=8(e^{2}-e^{-2}-e+e^{-1})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.