Answer
$|sec x|$
Work Step by Step
Given:$y=sinh^{-1} (\tan x)$
Since, $\dfrac{d (\sinh^{-1} x)}{dx}=\dfrac{1}{ \sqrt{1 + x^2}}$
Apply chain rule to get the differentiation.
Thus, $\dfrac{dy}{d x}=\dfrac{1}{ \sqrt{1 + (\tan x)^2}}(sec^2 x)=\dfrac{1}{ \sqrt{ (sec^2 x)}}(sec^2 x)$
or, $\dfrac{dy}{d x} =|sec x|$