Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 25

Answer

$\dfrac{1}{2 \sqrt{x(1+x)}} $ .

Work Step by Step

Given: $y=\sinh^{-1} \sqrt x$ Since, $\dfrac{d (\sinh^{-1} x)}{dx}=\dfrac{1}{\sqrt{1+x^2}}$ Thus, $\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1+(\sqrt x)^2}} (\dfrac{1}{2 \sqrt x})$ or, $=\dfrac{1}{2 \sqrt{x(1+x)}} $ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.