Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 28

Answer

$2 ( \theta +1) \tanh^{-1} (\theta +1) -1$

Work Step by Step

Given: $y=(\theta^2 + 2\theta) \tanh^{-1} (\theta +1)$ Since, $\dfrac{d (\tanh^{-1} x)}{dx}=\dfrac{1}{1-x^2}$ Apply product rule to get the differentiation. Thus, $\dfrac{dy}{d \theta}=\tanh^{-1} (\theta +1) (2 \theta +2)+(\theta^2+2 \theta) \dfrac{1}{1- (\theta+1)^2}=\tanh^{-1} (\theta +1) (2 \theta +2)+(\theta^2+2 \theta) \dfrac{1}{1- (\theta^2 + 2 \theta +1)}$ or, $= 2 ( \theta +1) \tanh^{-1} (\theta +1) -1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.