Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 59

Answer

$\dfrac{3}{8}+ \ln \sqrt 2$

Work Step by Step

Given: $\int^{0}_{-\ln 2} \cosh^2(\dfrac{x}{2}) dx$ As we know, $\cosh x=\dfrac{e^{x} + e^{-x}}{2}$ Thus, $\int^{0}_{-\ln 2} \cosh^2(\dfrac{x}{2}) dx=\int^{0}_{-\ln 2} [\dfrac{e^{x/2} + e^{-x/2}}{2}]^2 dx$ This implies: $\int^{0}_{-\ln 2} [\dfrac{e^{x/2} + e^{-x/2}}{2}]^2 dx= \dfrac{1}{4}\int^{0}_{-\ln 2} (e^{x} + e^{-x}+2) dx=(\dfrac{1}{4})[ e^{x} - e^{-x}+2x]^{0}_{-\ln 2}$ and, $= -(\dfrac{1}{4})[-\dfrac{3}{2}-2 \ln 2]$ Hence, $\int^{0}_{-\ln 2} \cosh^2(\dfrac{x}{2}) dx=\dfrac{3}{8}+ \ln \sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.