Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 21

Answer

$tanh^3 v$

Work Step by Step

Since, $\dfrac{d}{dx} (\cosh x)=\sinh x$; $\dfrac{d}{dx} (\tanh x)=sech^2 x$ and $\tanh^2 x+ sech^2 x=1$ $\dfrac{dy}{dv} =\dfrac{d}{dv} [\ln \cosh v-\dfrac{1}{2} \tanh^2 v)]$ or, $=\dfrac{1}{(\cosh v)}(\sinh v)-\dfrac{1}{2}(2) \tanh v (sech^2 v)$ or, $=\tanh v (1-sech^2 v)$ Thus, $\dfrac{dy}{dv}=tanh^3 v$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.