Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 19

Answer

$sech \theta \tanh \theta (\ln sech \theta)$

Work Step by Step

Given: $y=sech \theta (1-\ln sech \theta)$ As we know, $\dfrac{d}{dx} (sech x)=-(sech x \tanh x)$ Thus, $\dfrac{d y}{d \theta}=sech \theta[\dfrac{-1}{sech \theta}( -sech \theta \tanh \theta)]+(1-\ln sech \theta)=(sech \theta \tanh \theta)[1-(1-\ln sech \theta)]$ or, $=sech \theta \tanh \theta (\ln sech \theta)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.