Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 430: 56

Answer

$e+e^{-1}-2$

Work Step by Step

As we are given that $\int^{\pi/2}_{0} 2\sinh(\sin \theta) \cos \theta d\theta$ Now ,consider $\sin \theta=t$ and $dt= \cos \theta d\theta$ This implies: $\int^{\pi/2}_{0} 2\sinh(\sin \theta) \cos \theta d\theta=\int^{1}_{0} 2 \sinh t dt=[2 \cosh h t]^{1}_{0}$ and $=2 \cosh (1) -2$ As we know that $\cosh \theta=\dfrac{e^{\theta} + e^{-\theta}}{2}$ Thus, we have, $= 2[\dfrac{e^{1} + e^{-1}}{2}]-2$ Hence, $\int^{\pi/2}_{0} 2\sinh(\sin \theta) \cos \theta d\theta=e+e^{-1}-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.