Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 99

Answer

$$\ln 2$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{2^{\sin x}} - 1}}{{{e^x} - 1}} \cr & {\text{evaluating the limit, we get:}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{{2^{\sin x}} - 1}}{{{e^x} - 1}} = \frac{{{2^{\sin \left( 0 \right)}} - 1}}{{{e^0} - 1}} \cr & = \frac{{1 - 1}}{{1 - 1}} \cr & = \frac{0}{0} \cr & {\text{the limit is }}\frac{0}{0}{\text{}}{\text{, so we can apply l'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {{2^{\sin x}} - 1} \right)}}{{d/dx\left( {{e^x} - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{2^{\sin x}}\left( {\ln 2} \right)\left( {\cos x} \right)}}{{{e^x}}} \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{{{2^{\sin \left( 0 \right)}}\left( {\ln 2} \right)\left( {\cos 0} \right)}}{{{e^0}}} \cr & = \frac{{\ln 2}}{1} \cr & {\text{then}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{{2^{\sin x}} - 1}}{{{e^x} - 1}} = \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.