Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 96

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^3}}}{{{x^2} - 1}} - \frac{{{x^3}}}{{{x^2} + 1}}} \right) \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{{{\infty ^3}}}{{{\infty ^2} - 1}} - \frac{{{\infty ^3}}}{{{\infty ^2} + 1}} = \frac{\infty }{\infty } \cr & {\text{simplify }}\frac{{{x^3}}}{{{x^2} - 1}} - \frac{{{x^3}}}{{{x^2} + 1}} \cr & \frac{{{x^3}}}{{{x^2} - 1}} - \frac{{{x^3}}}{{{x^2} + 1}} = \frac{{{x^5} + {x^3} - {x^5} + {x^3}}}{{\left( {{x^2} - 1} \right)\left( {{x^2} - 1} \right)}} = \frac{{2{x^3}}}{{{x^4} - 1}} \cr & = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{2{x^3}}}{{{x^4} - 1}}} \right) \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{{2{{\left( \infty \right)}^3}}}{{{{\left( \infty \right)}^4} - 1}} = \frac{\infty }{\infty } \cr & {\text{apply l'Hopital's Rule}}{\text{}}{\text{,}} \cr & = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{d/dx\left( {2{x^3}} \right)}}{{d/dx\left( {{x^4} - 1} \right)}}} \right) \cr & = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{6{x^2}}}{{4{x^3}}}} \right) \cr & = \frac{3}{2}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right) \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{3}{2}\left( {\frac{1}{\infty }} \right) \cr & = \frac{3}{2}\left( 0 \right) \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.