Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 71

Answer

$$\frac{\pi }{{12}}$$

Work Step by Step

$$\eqalign{ & \int_{\sqrt 2 /3}^{2/3} {\frac{{dy}}{{\left| y \right|\sqrt {9{y^2} - 1} }}} \cr & {\text{Use the substitution method:}} \cr & u = 3y,\,\,\,\,\,\,du = 3dy,\,\,\,\,dy = \frac{{du}}{3} \cr & {\text{the new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}y = 2/3,{\text{ then }}u = 2 \cr & \,\,\,\,\,\,{\text{If }}y = \sqrt 2 /3,{\text{ then }}u = \sqrt 2 \cr & {\text{then}} \cr & \int_{\sqrt 2 /3}^{2/3} {\frac{{dy}}{{\left| y \right|\sqrt {9{y^2} - 1} }}} = \int_{\sqrt 2 }^2 {\frac{{du/3}}{{\left| y \right|\sqrt {{u^2} - 1} }}} \cr & = \int_{\sqrt 2 }^2 {\frac{{du}}{{\left| u \right|\sqrt {{u^2} - 1} }}} \cr & {\text{integrate}} \cr & = \left( {{{\sec }^{ - 1}}u} \right)_{\sqrt 2 }^2 \cr & {\text{use the fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = {\sec ^{ - 1}}\left( 2 \right) - {\sec ^{ - 1}}\left( {\sqrt 2 } \right) \cr & {\text{simplifying, we get:}} \cr & = \frac{\pi }{3} - \frac{\pi }{4} \cr & = \frac{\pi }{{12}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.