Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 102

Answer

= $1$

Work Step by Step

$\mathop {\lim }\limits_{x \to 0 }$ $\frac{x(sin{x^{2}})}{tan^{3}x}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{x(cos{x^{2}})(2x)+sinx^{2}(1)}{3tan^{2}x(sec^{2}x)}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{2x^{2}(cos{x^{2}})+sinx^{2}}{3tan^{2}x(1+tan^{2}x)}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{2x^{2}(cos{x^{2}})+sinx^{2}}{3tan^{2}x+3tan^{4}x}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{2x^{2}(-sin{x^{2}})(2x)+(cos{x^{2}})(4x)+cosx^{2}(2x)}{6tan(x)sec^{2}x+12tan^{3}x(sec^{2}x)}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{-4x^{3}sin{x^{2}}+6x(cos{x^{2}})}{6tan{x}(1+tan^{2}x)+12tan^{3}x(1+tan^{2}x)}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{-4x^{3}sin{x^{2}}+6x(cos{x^{2}})}{6tan{x}+6tan^{2}x+12tan^{3}x+12tan^{5}x}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{-4x^{3}sin{x^{2}}+6x(cos{x^{2}})}{6tan{x}+6tan^{2}x+12tan^{3}x+12tan^{5}x}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{-4x^{3}cosx^{2}(2x)+sinx^{2}(-12x^{2})+6x(-sin{x^{2}})(2x)+cosx^{2}(6)}{{6sec^{2}x}+6(2)(tanx)(sec^{2}x)+12(3)tan^{2}x(sec^{2}x)+12(5)tan^{4}x(sec^{2}x)}$ = $\mathop {\lim }\limits_{x \to 0 }$ $\frac{(-8x^{4}+6)cosx^{2}-24x^{2}sinx^{2}}{{6sec^{2}x}+12(tanx)(sec^{2}x)+36tan^{2}x(sec^{2}x)+60tan^{4}x(sec^{2}x)}$ =$\frac{6}{6}$ = $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.