Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 98

Answer

$$\ln 3$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\theta \to 0} \frac{{{3^\theta } - 1}}{\theta } \cr & {\text{evaluating the limit, we get:}} \cr & \mathop {\lim }\limits_{\theta \to 0} \frac{{{3^\theta } - 1}}{\theta } = \frac{{{3^0} - 1}}{0} \cr & = \frac{0}{0} \cr & {\text{the limit is }}\frac{0}{0}{\text{}}{\text{, so we apply l'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{\theta \to 0} \frac{{d/d\theta \left( {{3^\theta } - 1} \right)}}{{d/d\theta \left( \theta \right)}} \cr & = \mathop {\lim }\limits_{\theta \to 0} \frac{{{3^\theta }\ln 3}}{1} \cr & = \mathop {\lim }\limits_{\theta \to 0} \left( {{3^\theta }\ln 3} \right) \cr & {\text{evaluating the limit, we get:}} \cr & = {3^0}\ln 3 \cr & = \ln 3 \cr & {\text{then}}{\text{,}} \cr & \mathop {\lim }\limits_{\theta \to 0} \frac{{{3^\theta } - 1}}{\theta } = \ln 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.