Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 85

Answer

$$5$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 3x - 4}}{{x - 1}} \cr & {\text{Evaluating, we get:}} \cr & = \frac{{{{\left( 1 \right)}^2} + 3\left( 1 \right) - 4}}{{1 - 1}} = \frac{{4 - 4}}{{1 - 1}} = \frac{0}{0} \cr & {\text{Using l'Hopital's rule}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{d}{{dx}}\left( {{x^2} + 3x - 4} \right)}}{{\frac{d}{{dx}}\left( {x - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{2x + 3}}{1} \cr & {\text{Evaluating the limit, we get:}} \cr & = 2\left( 1 \right) + 3 \cr & = 5 \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 3x - 4}}{{x - 1}} = 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.