Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 70

Answer

$$6{\sec ^{ - 1}}\left| {\frac{y}{4}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{24dy}}{{y\sqrt {{y^2} - 16} }}} \cr & = \int {\frac{{24dy}}{{y\sqrt {{y^2} - {4^2}} }}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = y,{\text{ so that }}du = dy \cr & {\text{then}} \cr & = \int {\frac{{24du}}{{u\sqrt {{u^2} - {4^2}} }}} \cr & = 24\int {\frac{{du}}{{u\sqrt {{u^2} - {4^2}} }}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{u\sqrt {{u^2} - {a^2}} }} = \frac{1}{a}se{c^{ - 1}}\left| {\frac{u}{a}} \right| + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 4 \cr & = 24\left( {\frac{1}{4}{{\sec }^{ - 1}}\left| {\frac{u}{4}} \right|} \right) + C \cr & = 6{\sec ^{ - 1}}\left| {\frac{u}{4}} \right| + C \cr & {\text{replace }}y{\text{ for }}u \cr & = 6{\sec ^{ - 1}}\left| {\frac{y}{4}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.