Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 80

Answer

$$ y = - 2{\log _{12}}3$$

Work Step by Step

$$\eqalign{ & {4^{ - y}} = {3^{y + 2}} \cr & {\text{take the natural logarithm on both sides}} \cr & \ln {4^{ - y}} = \ln {3^{y + 2}} \cr & {\text{use the power property}} \cr & - y\ln 4 = \left( {y + 2} \right)\ln 3 \cr & - y\ln 4 = y\ln 3 + 2\ln 3 \cr & {\text{solve for }}y \cr & - y\ln 4 - y\ln 3 = 2\ln 3 \cr & y\ln 4 + y\ln 3 = - 2\ln 3 \cr & \left( {\ln 4 + \ln 3} \right)y = - 2\ln 3 \cr & \left( {\ln 12} \right)y = - 2\ln 3 \cr & y = \frac{{ - 2\ln 3}}{{\ln 12}} \cr & y = - 2{\log _{12}}3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.