Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 73

Answer

$${\sin ^{ - 1}}\left( {x + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt { - 2x - {x^2}} }}} \cr & {\text{completing the square for }} - 2x - {x^2} \cr & - 2x - {x^2} = - \left( {{x^2} + 2x + 1} \right) + 1 \cr & - 2x - {x^2} = 1 - {\left( {x + 1} \right)^2} \cr & {\text{then}}{\text{,}} \cr & \int {\frac{{dx}}{{\sqrt {1 - {{\left( {x + 1} \right)}^2}} }}} \cr & {\text{use the substitution method}} \cr & u = x + 1,\,\,\,\,\,\,du = dx \cr & \int {\frac{{dx}}{{\sqrt {1 - {{\left( {x + 1} \right)}^2}} }}} = \int {\frac{{du}}{{\sqrt {1 - {u^2}} }}} \cr & {\text{integrating}} \cr & = {\sin ^{ - 1}}u + C \cr & {\text{write in terms of }}x{\text{; replace }}u = x + 1 \cr & = {\sin ^{ - 1}}\left( {x + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.