Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 90

Answer

$$\frac{m}{n}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\sin mx}}{{\sin nx}} \cr & {\text{Evaluating, we get:}} \cr & = \frac{{\sin m\left( 0 \right)}}{{\sin n\left( 0 \right)}} = \frac{0}{0} \cr & {\text{Using the lHopital's rule}} \cr & = \frac{{\mathop {\lim }\limits_{x \to 0} \frac{d}{{dx}}\left( {\sin mx} \right)}}{{\mathop {\lim }\limits_{x \to 0} \frac{d}{{dx}}\left( {\sin nx} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{m\cos mx}}{{n\cos mx}} \cr & {\text{Evaluating the limit, we get:}} \cr & = \frac{{m\cos m\left( 0 \right)}}{{n\cos m\left( 0 \right)}} \cr & = \frac{{m\left( 1 \right)}}{{n\left( 1 \right)}} \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{\sin mx}}{{\sin nx}} = \frac{m}{n} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.