Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 97

Answer

$$\ln 10$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{{{10}^x} - 1}}{x} \cr & {\text{evaluating the limit, we get:}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{{{10}^x} - 1}}{x} = \frac{{{{10}^0} - 1}}{0} \cr & = \frac{0}{0} \cr & {\text{the limit is }}\frac{0}{0}{\text{, so}}{\text{ we apply l'Hopital's rule}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {{{10}^x} - 1} \right)}}{{d/dx\left( x \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{{{10}^x}\ln 10}}{1} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {{{10}^x}\ln 10} \right) \cr & {\text{evaluating the limit, we get:}} \cr & = {10^0}\ln 10 \cr & = \ln 10 \cr & {\text{then}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{{{10}^x} - 1}}{x} = \ln 10 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.