Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 83

Answer

$$ y = \frac{1}{{1 - {e^x}}}$$

Work Step by Step

$$\eqalign{ & \ln \left( {y - 1} \right) = x + \ln y \cr & {\text{exponentiate both sides}} \cr & {e^{\ln \left( {y - 1} \right)}} = {e^{x + \ln y}} \cr & {e^{\ln \left( {y - 1} \right)}} = {e^x}{e^{\ln y}} \cr & {\text{simplifying, we get:}} \cr & y - 1 = y{e^x} \cr & {\text{solve for }}y \cr & y - y{e^x} = 1 \cr & y\left( {1 - {e^x}} \right) = 1 \cr & y = \frac{1}{{1 - {e^x}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.