Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 63

Answer

$$\frac{{9\ln 2}}{4}$$

Work Step by Step

$$\eqalign{ & \int_1^8 {\frac{{{{\log }_4}\theta }}{\theta }} d\theta \cr & {\text{Use lo}}{{\text{g}}_a}x = \frac{{\ln x}}{{\ln a}}{\text{, so that }}{\log _4}\theta = \frac{{\ln \theta }}{{\ln 4}} \cr & = \int_1^8 {\frac{{\ln \theta }}{{\ln 4}}\left( {\frac{1}{\theta }} \right)} d\theta \cr & = \frac{1}{{\ln 4}}\int_1^8 {\ln \theta \left( {\frac{1}{\theta }} \right)} d\theta \cr & {\text{Use substitution:}}\cr &{\text{Let }}u = \ln \theta,{\text{ so that }}du = \frac{1}{\theta }d\theta \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}\theta = 8,{\text{ then }}u = \ln 8 \cr & \,\,\,\,\,\,{\text{If }}\theta = 1,{\text{ then }}u = 0 \cr & {\text{Then}} \cr & \frac{1}{{\ln 4}}\int_1^8 {\ln \theta \left( {\frac{1}{\theta }} \right)} d\theta = \frac{1}{{\ln 4}}\int_0^{\ln 8} u du \cr & {\text{integrating}} \cr & = \frac{1}{{\ln 4}}\left( {\frac{{{u^2}}}{2}} \right)_0^{\ln 8} \cr & = \frac{1}{{2\ln 4}}\left( {{{\ln }^2}8 - 0} \right) \cr & {\text{simplifying, we get:}} \cr & = \frac{{{{\ln }^2}8}}{{\ln 16}} \cr & = \frac{{{{\ln }^2}\left( {{2^3}} \right)}}{{\ln \left( {{2^4}} \right)}} \cr & = \frac{{{3^2}{{\ln }^2}\left( 2 \right)}}{{4\ln \left( 2 \right)}} \cr & = \frac{{9\ln 2}}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.