Answer
$-\frac{1}{2}$ is minimum
$0$ is maximum
Work Step by Step
$\frac{dy}{dx}$ = $x(\frac{2}{2x})+\ln2x-1$ = $\ln2x$
$\frac{dy}{dx}$ = $0$
so
$\ln2x$ = $0$
$2x$ = $e^{0}$
$x$ = $\frac{1}{2}$
if $x$ = $\frac{1}{2}$ then
$y$ = $\frac{1}{2}\ln1-\frac{1}{2}$
$y$ = $-\frac{1}{2}$ is minimum
if $x$ = $\frac{e}{2}$ then
$y$ = $\frac{e}{2}\ln{e}-\frac{e}{2}$
$y$ = $0$ is maximum