Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 93

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \left( {\csc x - \cot x} \right) \cr & {\text{Evaluating the limit, we get:}} \cr & \mathop {\lim }\limits_{x \to 0} \left( {\csc x - \cot x} \right) = \csc 0 - \cot 0 \cr & \mathop {\lim }\limits_{x \to 0} \left( {\csc x - \cot x} \right) = \infty - \infty \cr & {\text{Use the basic trigonometric identities}} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{{\sin x}} - \frac{{\cos x}}{{\sin x}}} \right) \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos x}}{{\sin x}}} \right) \cr & {\text{Evaluating the limit, we get:}} \cr & = \frac{{1 - \cos 0}}{{\sin 0}} = \frac{0}{0} \cr & {\text{The limit is }}\frac{0}{0}{\text{, so }}{\text{we apply l'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {1 - \cos x} \right)}}{{d/dx\left( {\sin x} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{{\cos x}} \cr & {\text{Evaluating the limit, we get:}} \cr & = \frac{{\sin 0}}{{\cos 0}} \cr & = 0 \cr & {\text{Then}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 0} \left( {\csc x - \cot x} \right) = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.