Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 105

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to {0^ + }} \left( {\frac{{{e^t}}}{t} - \frac{1}{t}} \right) \cr & {\text{Combine fractions}} \cr & = \mathop {\lim }\limits_{t \to {0^ + }} \left( {\frac{{{e^t} - 1}}{t}} \right) \cr & {\text{evaluating the limit}} \cr & = \frac{{{e^0} - 1}}{0} = \frac{0}{0} \cr & {\text{The limit is }}\frac{0}{0}{\text{, so}}{\text{, we can apply l'Hopital's Rule}} \cr & = \mathop {\lim }\limits_{t \to {0^ + }} \frac{{d/dt\left( {{e^t} - 1} \right)}}{{d/dt\left( t \right)}} \cr & = \mathop {\lim }\limits_{t \to {0^ + }} \frac{{{e^t}}}{1} = \frac{{{e^0}}}{1} = 1 \cr & {\text{Then}}{\text{,}} \cr & \mathop {\lim }\limits_{t \to {0^ + }} \left( {\frac{{{e^t}}}{t} - \frac{1}{t}} \right) = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.