Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 107

Answer

= $1$

Work Step by Step

$f(x)$ = $\mathop {\lim }\limits_{n \to \infty }$ $(\frac{e^{x}+1}{e^{x}-1})^{\ln{x}}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\ln(\frac{e^{x}+1}{e^{x}-1})^{\ln{x}}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\\ln(x)ln(\frac{e^{x}+1}{e^{x}-1})$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\\ln(x)ln(\frac{e^{\frac{x}{2}}+e^{\frac{-x}{2}}}{e^{\frac{x}{2}}-e^{\frac{-x}{2}}})$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\\ln(x)ln(coth(\frac{x}{2}))$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{ln(coth(\frac{x}{2}))}{(\ln{x})^{-1}}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{x(tanh(\frac{x}{2}))(csch^{2}(\frac{x}{2}))}{2(\ln(x))^{-2}}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{x(\ln(x))^{2}}{2cosh(\frac{x}{2})sinh(\frac{x}{2})}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{x(\ln(x))^{2}}{sinh(x)}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{2\ln(x)+(\ln(x))^{2}}{cosh(x)}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{\frac{2}{x}+\frac{2(\ln(x))}{x}}{sinh(x)}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{2+2(\ln{x})}{x(sinh(x))}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{\frac{2}{x}}{x(cosh(x))+sinh(x)}$ $\ln{f(x)}$ = $\mathop {\lim }\limits_{n \to \infty }$ $\frac{2}{x^{2}(cosh(x))+x(sinh(x))}$ $\ln{f(x)}$ = $0$ ${f(x)}$ = $e^{0}$ ${f(x)}$ = $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.