Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 86

Answer

$$\frac{a}{b}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 1} \frac{{{x^a} - 1}}{{{x^b} - 1}} \cr & {\text{Evaluating, we get:}} \cr & = \frac{{{1^a} - 1}}{{{1^b} - 1}} = \frac{{1 - 1}}{{1 - 1}} = \frac{0}{0} \cr & {\text{Using l'Hopital's rule, we get:}} \cr & = \frac{{\mathop {\lim }\limits_{x \to 1} \frac{d}{{dx}}\left( {{x^a} - 1} \right)}}{{\mathop {\lim }\limits_{x \to 1} \frac{d}{{dx}}\left( {{x^b} - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{a{x^{a - 1}}}}{{b{x^{b - 1}}}} \cr & {\text{Evaluating the limit, we get:}} \cr & = \frac{{a{{\left( 1 \right)}^{a - 1}}}}{{b{{\left( 1 \right)}^{b - 1}}}} \cr & = \frac{a}{b} \cr & {\text{Then}} \cr & \mathop {\lim }\limits_{x \to 1} \frac{{{x^a} - 1}}{{{x^b} - 1}} = \frac{a}{b} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.