Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 101

Answer

$$ - 5$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{5 - 5\cos x}}{{{e^x} - x - 1}} \cr & {\text{evaluating the limit, we get:}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{5 - 5\cos x}}{{{e^x} - x - 1}} = \frac{{5 - 5\cos \left( 0 \right)}}{{{e^0} - 0 - 1}} = \frac{{5 - 5}}{{1 - 1}} = \frac{0}{0} \cr & {\text{the limit is }}\frac{0}{0}{\text{}}{\text{, so we can apply l'Hopital's rule}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {5 - 5\cos x} \right)}}{{d/dx\left( {{e^x} - x - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{ - 5\sin x}}{{{e^x} - 1}} \cr & {\text{evaluating the limit, we get:}} \cr & = \frac{{ - 5\sin \left( 0 \right)}}{{{e^0} - 1}} \cr & = \frac{0}{{1 - 1}} = \frac{0}{0} \cr & {\text{the limit is still }}\frac{0}{0}{\text{, so}}{\text{ we apply l'Hopital's rule again}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( { - 5\sin x} \right)}}{{d/dx\left( {{e^x} - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{ - 5\cos x}}{{{e^x}}} \cr & = \frac{{ - 5\cos \left( 0 \right)}}{{{e^0}}} \cr & = - 5 \cr & {\text{then}}{\text{,}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{5 - 5\cos x}}{{{e^x} - x - 1}} = - 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.