Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 440: 64

Answer

$$4$$

Work Step by Step

$$\eqalign{ & \int_1^e {\frac{{8\ln 3{{\log }_3}\theta }}{\theta }} d\theta \cr & {\text{Use lo}}{{\text{g}}_a}x = \frac{{\ln x}}{{\ln a}}{\text{, so that }}{\log _3}\theta = \frac{{\ln \theta }}{{\ln 3}} \cr & = 8\ln 3\int_1^e {\left( {\frac{{\ln \theta }}{{\ln 3}}} \right)\frac{1}{\theta }} d\theta \cr & = 8\int_1^e {\left( {\ln \theta } \right)\frac{1}{\theta }} d\theta \cr & {\text{Use substitution:}}\cr &{\text{Let }}u = \ln \theta,{\text{ so that }}du = \frac{1}{\theta }d\theta \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}\theta = e,{\text{ then }}u = \ln e = 1 \cr & \,\,\,\,\,\,{\text{If }}\theta = 1,{\text{ then }}u = \ln 1 = 0 \cr & {\text{Then}} \cr & 8\int_1^e {\left( {\ln \theta } \right)\frac{1}{\theta }} d\theta = 8\int_0^1 u du \cr & {\text{integrating}} \cr & = 8\left( {\frac{{{u^2}}}{2}} \right)_0^1 \cr & = 4\left( {{1^2} - {0^2}} \right) \cr & {\text{simplifying, we get:}} \cr & = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.