Answer
$\frac 1 {16}x^4(4lnx-1)+C$
Work Step by Step
$dv=x^3dx$
$v= \int x^3dx = \frac {x^4}4$
$u=lnx, du = \frac 1 x dx$
$\int x^3lnxdx = uv-\int vdu$
$(lnx)\frac {x^4}4 -\int(\frac {x^4}4)\frac 1 x dx$
$\frac {x^4}4lnx- \frac 1 4 \int x^3dx$
$\frac {x^4}4lnx- \frac 1 {16}x^4+C$
$\frac 1 {16}x^4(4lnx-1)+C$