Answer
$$\int_{0}^{3} x e^{x / 2} d x =2e^{3/2}+4$$
Work Step by Step
Since $$
\int_{0}^{3} x e^{x / 2} d x
$$
Integrate by parts , let
\begin{align*}
u&=x\ \ \ \ \ \ \ dv= e^{x / 2} d x\\
du&=dx\ \ \ \ \ \ v=2 e^{x / 2}
\end{align*}
Then \begin{align*}
\int_{0}^{3} x e^{x / 2} d x&=uv-\int vdu\\
&=2x e^{x / 2}\bigg|_{0}^{3} -\int_{0}^{3}2 e^{x / 2} dx\\
&=2x e^{x / 2}\bigg|_{0}^{3} -4e^{x / 2}\bigg|_{0}^{3} \\
&=2e^{3/2}+4
\end{align*}