Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 15

Answer

$$ \int t \ln (t+1) d t= \frac{1}{2}t\ln (t+1)-\frac{1}{2}\left(\frac{1}{2}(t-1)^2+ \ln(t+1)\right)+c $$

Work Step by Step

$$ \int t \ln (t+1) d t $$ Integrate by parts \begin{align*} u&=\ln (t+1)\ \ \ \ \ \ dv=tdt\\ du&=\frac{1}{t+1}\ \ \ \ \ \ v=\frac{1}{2}t^2 \end{align*} Then \begin{align*} \int t \ln (t+1) d t&= \frac{1}{2}t\ln (t+1)-\frac{1}{2}\int \frac{t^2}{t+1}dt\\ &= \frac{1}{2}t\ln (t+1)-\frac{1}{2}\int\left((t-1)+ \frac{1}{t+1}\right)dt\\ &= \frac{1}{2}t\ln (t+1)-\frac{1}{2}\left(\frac{1}{2}(t-1)^2+ \ln(t+1)\right)+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.