Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 43

Answer

$$\frac{\pi }{6} - \frac{{\sqrt 3 }}{2} + 1$$

Work Step by Step

$$\eqalign{ & \int_0^{1/2} {\arccos x} dx \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = \arccos x,{\text{ }}du = - \frac{1}{{\sqrt {1 - {x^2}} }}dx \cr & dv = dx,{\text{ }}v = x \cr & {\text{Integration by parts formula }} \cr & \int {\underbrace {\arccos x}_u} \underbrace {dx}_{dv} = \underbrace {\left( {\arccos x} \right)}_u\underbrace {\left( x \right)}_v - \int {\underbrace {\left( x \right)}_v} \underbrace {\left( { - \frac{1}{{\sqrt {1 - {x^2}} }}} \right)dx}_{du} \cr & \int {\arccos x} dx = x\arccos x + \int {\frac{x}{{\sqrt {1 - {x^2}} }}} dx \cr & \int {\arccos x} dx = x\arccos x - \frac{1}{2}\int {\frac{{ - 2x}}{{\sqrt {1 - {x^2}} }}} dx \cr & \int {\arccos x} dx = x\arccos x - \sqrt {1 - {x^2}} + C \cr & {\text{Therefore,}} \cr & \int_0^{1/2} {\arccos x} dx = \left[ {x\arccos x - \sqrt {1 - {x^2}} } \right]_0^{1/2} \cr & = \left[ {\frac{1}{2}\arccos \left( {\frac{1}{2}} \right) - \sqrt {1 - {{\left( {\frac{1}{2}} \right)}^2}} } \right] - \left[ {\left( 0 \right)\arccos \left( 0 \right) - \sqrt {1 - {{\left( 0 \right)}^2}} } \right] \cr & = \left[ {\frac{1}{2}\left( {\frac{\pi }{3}} \right) - \frac{{\sqrt 3 }}{2}} \right] - \left[ {0 - 1} \right] \cr & = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2} + 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.