Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 14

Answer

$$-e^{{}^{1}{\mskip -5mu/\mskip -3mu}_{t}}+C$$

Work Step by Step

$\color{blue}{\text{Rewrite}}$ $$\int \dfrac{e^{{}^{1}{\mskip -5mu/\mskip -3mu}_{t}}}{t^2}dt=\int e^{{}^{1}{\mskip -5mu/\mskip -3mu}_{t}}\cdot \dfrac{1}{t^2}dt$$ $\color{blue}{\text{Let } u=\dfrac{1}{t}\Rightarrow \quad du=-\dfrac{1}{t^2}dt\Rightarrow \quad -du=\dfrac{1}{t^2}dt}$ $\color{blue}{\text{Make the substitution}}$ $$ \int \underbrace{e^{{}^{1}{\mskip -5mu/\mskip -3mu}_{t}}}_{\color{red}{e^{u}}}\cdot \underbrace{\dfrac{1}{t^2}dt}_{\color{red}{-du}} =\int e^u (-du)=-\int e^u du$$ $\color{blue}{\text{Integrate}}$ $$-\int e^u du=-e^u$$ $\color{blue}{\text{Back-Substitute }\text{ } u=\dfrac{1}{t}}$ $$ \boxed{\int \dfrac{e^{{}^{1}{\mskip -5mu/\mskip -3mu}_{t}}}{t^2}dt=-e^{{}^{1}{\mskip -5mu/\mskip -3mu}_{t}}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.