Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 46

Answer

$$\ln \left( 5 \right) - 2 + 4{\tan ^{ - 1}}\left( {\frac{1}{2}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\ln \left( {4 + {x^2}} \right)dx} \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = \ln \left( {4 + {x^2}} \right),{\text{ }}du = \frac{{2x}}{{4 + {x^2}}}dx \cr & dv = dx,{\text{ }}v = x \cr & {\text{ Integration by Parts Formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {\ln \left( {4 + {x^2}} \right)} dx = x\ln \left( {4 + {x^2}} \right) - \int {\frac{{2{x^2}}}{{4 + {x^2}}}dx} \cr & {\text{By long division }}\frac{{2{x^2}}}{{4 + {x^2}}} = 2 - \frac{8}{{4 + {x^2}}} \cr & \int {\ln \left( {4 + {x^2}} \right)} dx = x\ln \left( {4 + {x^2}} \right) - \int {\left( {2 - \frac{8}{{4 + {x^2}}}} \right)} dx \cr & \int {\ln \left( {4 + {x^2}} \right)} dx = x\ln \left( {4 + {x^2}} \right) - 2\int {dx} + 8\int {\frac{1}{{4 + {x^2}}}dx} \cr & {\text{Integrate}} \cr & \int {\ln \left( {4 + {x^2}} \right)} dx = x\ln \left( {4 + {x^2}} \right) - 2x + 4{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C \cr & \cr & {\text{Therefore,}} \cr & \int_0^1 {\ln \left( {4 + {x^2}} \right)} dx = \left[ {x\ln \left( {4 + {x^2}} \right) - 2x + 4{{\tan }^{ - 1}}\left( {\frac{x}{2}} \right)} \right]_0^1 \cr & = \left[ {\ln \left( 5 \right) - 2 + 4{{\tan }^{ - 1}}\left( {\frac{1}{2}} \right)} \right] - \left[ {0\ln \left( 4 \right) - 0 + 4{{\tan }^{ - 1}}\left( {\frac{0}{2}} \right)} \right] \cr & {\text{Simplify}} \cr & = \ln \left( 5 \right) - 2 + 4{\tan ^{ - 1}}\left( {\frac{1}{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.