Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 32

Answer

$$y=x\arctan \frac{x}{2}-\ln(x^2+4)+c$$

Work Step by Step

Since $$ y^{\prime}=\arctan \frac{x}{2} $$ Then \begin{align*} \frac{dy}{dx}&=\arctan \frac{x}{2}\\ y&=\int\arctan \frac{x}{2} dx \end{align*} Integrate by parts, let \begin{align*} u&=\arctan \frac{x}{2}\ \ \ \ \ \ \ dv=dx\\ u&=\frac{2dx}{ x^2+ 4}\ \ \ \ \ \ \ \ \ \ v=x \end{align*} Then \begin{align*} \int\arctan \frac{x}{2} dx&=uv-\int vdu\\ &=x\arctan \frac{x}{2}-\int \frac{2xdx}{ x^2+ 4} dx\\ &=x\arctan \frac{x}{2}-\ln(x^2+4)+c \end{align*} Hence $$y=x\arctan \frac{x}{2}-\ln(x^2+4)+c$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.