Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 30

Answer

$e^{4x} *\frac{(\sin(2x) + 2\cos(2x))}{10} + C$

Work Step by Step

We want to solve for the following integral: $\int e^{4x} \cos(2x)$ $dx$ In order to solve this problem we integrate by parts twice in a row. The first time: Following $\int f g' = f g - \int f' g$, we have: $ f = \cos(2x), g' = e^{4x} \implies f' = -2\sin(2x)$ and $g = \frac{e^{4x}}{4} $ $\implies \int e^{4x}*\cos(2x)$ $dx = \frac{e^{4x}}{4}* \cos(2x) + \int \frac{e^{4x}*\sin(2x)}{2}dx $ The second time: $f = -2 \sin(2x), g' = \frac{e^{4x}}{4} \implies f' = -4\cos(2x), g = \frac{e^{4x}}{16} \implies$ $\frac{e^{4x}}{4}* \cos(2x) + \int \frac{e^{4x}*\sin(2x)}{2}dx = \frac{e^{4x}}{4}* \cos(2x) + \frac{e^{4x}\sin(2x)}{8} - \frac{1}{4} *\int e^{4x} \cos(2x) dx$ We now note that the desired integral, $\int e^{4x} \cos(2x)$ $dx$, appears on the right hand side of the equality: $\int e^{4x} \cos(2x)$ $dx= \frac{e^{4x}}{4}* \cos(2x) + \frac{e^{4x}\sin(2x)}{8} - \frac{1}{4} *\int e^{4x} \cos(2x) dx$ We may now add the integral to the other side $\implies$ $\frac{5}{4}*\int e^{4x} \cos(2x)$ $dx= \frac{e^{4x}}{4}* \cos(2x) + \frac{e^{4x}\sin(2x)}{8} $. Now dividing both sides by $\frac{5}{4}$, we have: $\int e^{4x} \cos(2x)$ $dx$ = $e^{4x} *\frac{(\sin(2x) + 2\cos(2x))}{10} + C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.