Answer
$\frac{1}{36}x^{6}(6ln3x-1)+C$
Work Step by Step
Use integration by parts to solve $\int x^{5}ln3xdx$
$u=ln3x,dv=\int x^{5}dx$
$du=\frac{1}{x},v=\frac{1}{6}x^{6}$
$=\frac{1}{6}x^{6}ln3x-\int (\frac{1}{x})(\frac{1}{6}x^{6})dx$
$=\frac{1}{6}x^{6}ln3x-\frac{1}{6}\int x^{5}dx$
$=\frac{1}{6}x^{6}ln3x-\frac{1}{6}(\frac{x^{6}}{6})+C$
$=\frac{1}{6}x^{6}ln3x-\frac{1}{36}x^{6}+C$
$=\frac{1}{36}x^{6}(6ln3x-1)+C$